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Introduction

Networks have recently been introduced in the modelling of complex systems. As they are able
to capture any regularities emerging from the structured interaction of numerous elementary parts,
they have been successful in catalysing research in fields as diverse as systems biology, cognitive
sciences, ecology and social sciences.

The main discipline in networks-oriented complexity science is to relate dynamical or compu-
tational properties of systems to structural properties of the networks underlying them. Various
exemples can be found where such an approach allowed genuine leaps in life sciences. It allowed
Von Dassow et al. (2000), in the context of Wagner et al. (2007)’s concept of modularity, to help
explain the structural homogeneity of morphogenic development networks in insects. It allowed
Ulanowicz (2004) to quantify ecosystemic stability from trophic networks estimates, and later help
apply his measure to macroeconomics (Huang and Ulanowicz, 2014).

While some macrostructural properties, characteristic of so called ”scale-free networks” (Ba-
rabási and Bonabeau, 2003), seem to be universal in real life structures, mesoscopic properties
seem to be more closely related to the specific function of the network and/or to the properties of
its elementary bricks.

For exemple, statistically significant network motifs seem to allow a broad sorting of networks
according to their function (Milo et al., 2002) : information processing (genes, neurons, and com-
puter electronics), energy flows (food webs), and information transmission (Web). These motifs
were speculated by the authors to be functionally related to the higher level network function. For
exemple, feed-forward loops (which filter environmental noise) are especially common in informa-
tion processing networks (be it electronic or neuronal).

However, statistical analysis is not sufficient to bridge the gap between mesoscopic motif dy-
namics and macroscopic network function. Functionally determinant but rare motifs would not be
detected by such an approach. It is also necessary to investigate functional properties of specific
network motifs to understand their integration into broader network properties.

This study investigates the dynamic properties of the double toggle switch motif in the context
of genetic regulation networks. It will more specifically adress this motif’s ability to retain infor-
mation through time ; in other words, to implement epigenetic memory in the highly fluctuating
world of biochemical dynamics.

While ”memory” has a rich meaning and potentially unlimited implementations, we only focus
here on its simplest and most natural traduction in the context of dynamical systems theory. It
is the existence of two distinct stable states deep enough (in the potential landscape space) to be
robust to fluctuations, but shallow enough to allow a switch given the relevant input.

In this regard, we will walk through the implementation of a custom mechanistic model of this
motif using the classical Gillespie algorithm (which generates possible trajectories of a stochastic
system). We will discuss along the way the reasons of each modelling step I took and their physical
meaning (in regard of preexisting literature and expected results). Finally, we will try to characterise
more precisely what ”memory” means in the context of our model.
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1 Model implementation

My model broadly follows what Herbach et al. (2017) developped, as their paper gave clear
guidelines to implement both stochasticity and interaction (which are the two critical elements of
our present analysis) into models for gene expression.

In the absence of explicit reference to another publication, every result I will use below can be
attributed to their paper.

The main divergence I took in regard to their work is a significant modification of the interaction
rules they presented. I added a layer of complexity by separating basal input of a given gene into
separate self-activation and extrinsic stimulation terms. This decision can easily be understood by
considering the intrinsic divergence of our approaches.

On one hand, their model attempts to facilitate statistical inference of the structure of in vivo,
large scale gene networks. As this implies to find an analytical form for the statistical form of
their model, they are considerably constrained in their account of self-activation. Besides, it is
unlikely such a distinction would help them much in inferring network structure. Indeed, inferring
self-activation form is so hard that they had to assume up to its direction in their model. In this
context, a finer information such as its presence for specific genes cannot be inferred robustly.

On the other hand, I need to analyse the dynamical behaviour of an in silico, small-scale gene
network. In this regard, having fine control over the intrinsic behaviour and extrinsic stimulation
of my system is both far more relevant and far easier than in Herbach et al. (2017)’s case. I am
not limited by considerations regarding the analytical properties or inferrability from real data of
my model, and (as we will see below) decoupling self-activation and extrinsic stimulation helps
me in designing my experimental protocol and identifying what are the key properties for memory
emergence.

After this general outline of the approach I adopted, we will discuss more precisely what specific
features I implemented in my model, and why they were necessary.

We will first adress how I introduced stochasticity in the analysis of gene expression in the ab-
sence of self-activation (following closely the original model), then how I accounted for the retroac-
tion of protein concentration on gene expression (drawing inspiration but departing significantly
from it). Finally we will adress the implementation of the double toggle switch itself.

1.1 Stochasticity in gene expression

I reproduced the modelling scheme used in Herbach et al. (2017), as represented figure 1.

Figure 1 – Scheme of the two-state model of gene expression,
from Herbach et al. (2017)

As is standard in literature
(Munsky et al., 2012), genes are
modelled as having an ”active”
state (they produce correspon-
ding mARN at constant rate s0)
and a ”passive” state (they do
not). They switch stochastically
from the passive state to the ac-
tive one at rate kon (resp from
the active to the passive state at
rate koff ).

This way, all of the dynamics
relevant to gene expression can
be described as a set of chemi-
cal reactions with given propen-
sities (the stochastic equivalent
of ”rate constants”). This is the classical case of application of the Gillespie algorithm, which uses
the distribution for next state change and next state change time (both being analytically com-
putable from propensities, at least in the approximation where no temporal correlations exist) to
generate statistically correct system trajectories.
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While gene activation stochasticity is crucial to the dynamics of our system, stochasticity can
be ignored in other reactions. This is because both mARN and protein quantities usually evolves
well above 1, which allow us to ignore the discrete aspect of their variations and approximate it
to be equal to their mean rate of change. The approximation is exact in the limit where s0 � d0 ;
s1 � d1, which is usually verified in experimental settings.

Using the continuous approximation for non-rare species, our system now switches between two
deterministic differential equations depending on the value adopted by a continuous time two-state
random process without memory, as appears equation 1. This makes it a Piecewise-Deterministic
Markov Process, a rather understood mathematical framework. While it allows Herbach et al.
(2017) to keep statistical tractability, it allows us to reduce the code complexity and focus on the
relevant stochasticity sources only.

E(t) : 0
kon−−−⇀↽−−−
koff

1

M ′(t) = s0 · E(t)− d0 ·M(t)

P ′(t) = s1 ·M(t)− d1 · P (t)

(1)

Using a mix of Gillespie algorithm and analytical resolution of the above ordinary differential
equations, I wrote a minimal library generating statistically correct trajectories for our sytem. It
is articulated around the code snippet below, which generates system state and time at next gene
state switch from current system state, current time and extrinsic perturbation ∆ 1.

## Stochas t i c step forward
w = s e l f . computeSwitchRates ( Delta )
W = sum(w)
dt = np . random . exponent ia l (1/W)

s e l f . t s imu += dt

## Dete rmin i s t i c i n t e g r a t i on
f o r i in range ( s e l f . s i z e ) :

s e l f .m[ i ] /= np . exp ( s e l f . d [ 0 ] ∗ dt )
s e l f .m[ i ] += s e l f . s [ 0 ] ∗ s e l f . g [ i ]∗(1−np . exp(− s e l f . d [ 0 ] ∗

dt ) ) / s e l f . d [ 0 ]
s e l f . p [ i ] /= np . exp ( s e l f . d [ 1 ] ∗ dt )
s e l f . p [ i ] += s e l f . s [ 1 ] ∗ s e l f .m[ i ]∗(1−np . exp ( s e l f . d [ 1 ] ∗ dt

) ) / s e l f . d [ 1 ]

## Stocha s t i c s t a t e change
w = [ i /W fo r i in w]
e = np . random . cho i ce ( s e l f . s i z e , p=w)
s e l f . g [ e ] = 1 − s e l f . g [ e ]

Figure 2 – Code for generating one Gillespie time step

This simulation is valida-
ted by its dynamical behaviour,
which is similar to the origi-
nal. For exemple, mRNA trajec-
tories are plotted for both our
simulation and Herbach et al.
(2017)’s figure 3. We can vi-
sually check that typical values,
variation timescales, and bursty
patterns all are conserved. The-
refore, our library approximates
correctly the expression dyna-
mics of a single gene without re-
troaction, at least in a similar
extent to the hybrid numerical

scheme Herbach et al. (2017) initially implemented.

1.2 Protein retroaction

In order to study the double toggle switch motif, we must define a model for gene interaction.
As modulation in genetic expression has been shown to be related to peak frequency ( kon) rather
than peak intensity (s0/koff) (Viñuelas et al., 2013), we will account for modulation through kon
only.

As in Herbach et al. (2017), our mechanistic assumption is that gene expression is modulated
by ligant binding dynamics, justifying the use of the classic Hill function. Because the proper form
for traducing the dynamics of several interacting species is not clear (Mizeranschi et al., 2015), we
have a certain level of leeway in assembling our final function.

1. Note that in the expression of protein levels, mRNA level is approximated to be constant. This is factually
false. However, as outlined in the original paper, no short-term correlation exist between mRNA levels and system
state due to de facto timescale separation between mRNA and protein dynamics. In this regard, the approximation
should not (and empirically does not) change system dynamics significantly.
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Figure 3 – mRNA trajectories from our model (above) and Herbach et al. (2017)’s (below) for
kon = 0.34, koff = 10, s0 = 103, s1 = 10, d0 = 0.5 and d1 = 0.1 (in h−1)

In order to facilitate dynamical study and interpretation, I will follow Herbach et al. (2017) in
spirit while devoting special attention to decouple contributions of the transcription factors and
different level of dynamics.

First, I will use the same general law for the expression of kon :

kon,i =
k0,i + k1,i · Φi

1 + Φi
(2)

...where k0,i, k1,i are respectively the maximal and minimal values of transition rates to the
active state for gene i, and Φi (which I will call the ”activation potential”) is a mesure of the
”permissivity” of the environment - that is, whether transition to the active state is favored or
hampered. Intuitively, kon is maximal for high Φ and minimal for low Φ, with a smooth transition
around Φ = 1.

However, I introduce an expression for the activation potential that accounts for all proteins
multiplicatively and homogenously (while in Herbach et al. (2017) the associated protein has a
special role) and includes an additive perturbation term, which I will use to force transitions in
the following simulations. I also add a parameter controlling the basal activity of each gene.

Φi = σi ·
∏
j

(
1 + exp(Θi,j) · ( pj

Si,j
)Mi,j

1 + (
pj

Si,j
)Mi,j

)
+ δi (3)

In this equation, Θ represents interaction strength, S represents the threshold for interaction,
and M represents the Hill coefficient for interaction. These parameters are identical to the ones
used in Herbach et al. (2017), and our Hill function also is expressed in the form Π 1+a·xm

1+xm . In this
regard, our gene activation rule phenomenologically perform the same function than the original,
except for the purposefully altered role of self-activation. The additional parameters are σ which
expresses basal activation potential and δ which represents extrinsic perturbations.

Noting φi,j the contribution of protein j to the multiplicative term of gene i’s activation func-
tion, we have :

φi,j(pj) =
1 + exp(Θi,j) · ( pj

Si,j
)Mi,j

1 + (
pj

Si,j
)Mi,j

(4)

This function is equivalent to a transition from 1 to exp(Θi,j) as pj goes from 0+ to +∞.
As the interaction between the φi,j terms is multiplicative, this means than gene i activation is

unaffected for pj → 0 and inhibited for pj
Θi,j<0−−−−→ +∞ (resp excited for pj

Θi,j>0−−−−→ +∞). Moreover,
the transition happens around pj = Si,j and is increasingly steeper with growing Mi,j .
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This expression allows every interaction to be modelled as a Hill function, in which we are able
to control every parameter. This is useful to appreciate qualitatively the behaviour of our system.

For exemple, Φ can be approximated in the limit M → +∞ by the following expression :

Φi '
M→+∞

σi· exp

 ∑
(j‖pj>Si,j)

Θi,j

+ δi

ie

Φi '
M→+∞

σi·

 ∏
(j‖pj>Si,j)

exp(Θi,j)

+ δi

(5)

This simplified expression will help us characterise the behaviour of our system while trying to
build memory in a double toggle switch model.

1.3 Building the double toggle switch

We will now adress the central point of our enterprise, which is the implementation of in silico
epigenetic memory in the form of a double toggle switch.

Our first task will be to restrict the parameter space, as in the model above three interacting
genes correspond to a total of 51 free parameters (24 for gene-specific parameters, 27 for interaction
matrixes), which is absolutely intractable for an in depth dynamic analysis.

Taking into account the structure of the desired network, we are able to remove some parame-
ters. Indeed, a double toggle switch by definition has the structure visible figure 4.

Figure 4 – Double toggle switch structure
While (1,2) and (2,3) are mutually inhibited, no interaction exist between

(1,3). Self-interaction form is not specified.

This allows to ignore all in-
teractions between gene 1 and 3,
which removes 6 free parameters
from our problem.

We will now force as much
symmetry as possible on our sys-
tem. While this condition is not
likely to be verified in real gene-
tic networks, it will help greatly
our purpose by weeding out pa-
rameter variations that are not key to the emergence of memory. It is likely that all existing double
toggle switch obey the same dynamics as their most symmetric case (modulo rescaling), and if not
the most symmetric case will be the most relevant for preliminary study anyway.

More specifically, these are the conditions we impose :
— All genes must have identical intrinsic properties, identical to those used in Herbach et al.

(2017) for their toggle switch model
— Hill function coefficients must be identical for all inhibitory (resp. self-) interactions
— Threshold levels must be equal for all inhibitory (resp. self-) interactions
— Self-interaction strength must be equal for lateral genes
This reduces our parameter count from 45 to 7. Remaining parameters, and their role in inter-

action structure, are presented below :

σ;M =

mself mlat 0
mlat mself mlat

0 mlat mself

 ;S =

sself slat +∞
slat sself slat
+∞ slat sself

 ; Θ =


θself,0 −θlat 0

−
θlat

2
θself,1 −

θlat

2
0 −θlat θself,0


(6)
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All traduce critical aspects of our interaction dynamics. Therefore, we must stop here our re-
duction.

We will now try to find heuristics for orienting our parameter search by discretising our system
to apply equation 5. Noting ”+” the permissive condition of gene expression (φi << 1) and ”−” its
restrictive condition (φi >> 1), our system state can be divided into regions where activity level
for each gene can either be strong (kon ∼ kon,1) or weak (kon ∼ kon,0). In the approximation where
these regions map well onto the state space, regions can be assimilated to discrete states whose
dynamical landscape is shown figure 5. Note that while this condition is verified for M → +∞,
transitions zones exist between regions for M < +∞ which could cause ”jumps” to occur in the
discretised state space.

Figure 5 – Discretised dynamical
landscape of the double toggle switch model

States coding for our memory are shown in bold
Bold lines represent possible state transitions that

are useful to memory

Dotted lines represent those that are detrimental to

memory

This reduction is especially relevant if, noting
p− (resp p+) the stable typical level of a protein
with its source gene in the − (resp +) condition,
we have : p− < Sself , Slat < p+, as it means that
each gene expression state is informative of whether
it modulates itself and its neighbours. In the limit
of deterministic behaviour, steplike activation func-
tion, and steady state, we have φi,j = exp(Θi,j) if i
is in state + and φi,j = 1 otherwise. In other words,
the double toggle switch behaves exactly as a single
gene expression model with parameters imposed by
equation 5 inside a given discretised state.

Transcient dynamics (ie what happens when
gene activation patterns have changed but protein
level not yet followed) are poorly captured in this
framework, but this is of no importance for our
present study as memory by definition occurs along
long time scales. Functional dynamics of our double
toggle switch are therefore fully accounted for in this
discretised reduction. Indeed, the only dynamic in-
ternal to each region is the stochasticity intrinsic to
gene expression, which is not related to interaction

structure and act only as a source of noise adverse to memory. The model can therefore be divided
between two scales : it acts as a deterministic boolean network at the level of the discretised states ;
and as a stochastic two-state gene expression model without interaction below. Both levels can be
bridged by introducing stochasticity in the transition between discrete-level states.

While the discretised model essentially closes the door for exact analytical approaches of our
problem as the process is not necessarily Markovian at the discretised level (and its temporal cor-
relations, emerging from a first passage process in an irregular space, are essentially impossible to
calculate), it greatly reduces the conceptual complexity of the toggle switch system by building a
relevant framework where to apply equation 5.

First, both (+,−,+) and (−,+,−) must be stable at the boolean level and in the absence of
perturbation for the double toggle switch to perform its function. This can be traduced by the
conditions σ · exp(θ)� 1 for all elements of Θ.

In addition, because sub-boolean level fluctuations will routinely bring the system near the
boundaries of (+,−,+) and (−,+,−), all other states must be unstable for the system not to
derive. More precisely, they should redirect to the stable state they are most likely to have derived
from, which means following the transitions that are bolded in figure 5. This allow to derive the
conditions σ · exp(θself − θlat)� 1 for both θself values
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Due to the fast growth of the exp function, these conditions can be expressed as :

θself,0 > − ln(σ)

θself,1 > − ln(σ)

θlat > − ln(σ)

θlat > θself,0 + ln(σ)

θlat > θself,1 + ln(σ)

(7)

In first approach, we take values similar to those in Herbach et al. (2017) for their toggle switch
model, which respect conditions established in equation 7 : σ = 1;mself = 3;mlat = 2; sself =
1.9 · 104; slat = 2 · 103; θself,0 = θself,1 = 4; θlat = 8.

We will now test this network’s property relatively to memory.

2 Characterisation of the double toggle switch’s memory

Using the δ parameter, we are able to design different experimental parameters for testing our
sytem’s dynamics. The first test we will run is for bistability, for which I show plots figure 6. An
extremely strong perturbation forces the system in the (-,+,-) state for 100h, then removed for
400h. The process is then repeated for the (+,-,+) state. The perturbation is visible in the log Φ
space as a steplike pattern. If a state is unstable, this will be visible as the system won’t hold it
during the rest time.

Figure 6 – Bistability test of the double toggle switch
Left : with Herbach et al. (2017)’s parameters

Right : with adjusted central gene self-activation

In fact, with unadjusted parameters from Herbach et al. (2017), the (-,+,-) state is indeed
unstable. As in the discretised state space between genes interaction are equal, this must be due
to the structural asymetry between the central gene and lateral genes. Looking at the log activity
trajectory, it is visible that just after the end of stimulation the level of activity is much lower
for the central gene than for lateral genes. This contrasts with the predictions of the discretised
model where, by construction, all genes should have the same activation in their endogenously
active state. This is not surprising as slat < p− in this parameter set, which means that even in the
repressed state a gene can cause the inhibition of its neighbour. In other word, the scale separation
we postulated in our discretised model does not hold.

It would be rather easy to enforce bistability by imposing scale separation (for exemple by
heighening slat, and lowering kon,0 and σ). However, I believe this would negatively affect the
relevance of our present model. It would not be a surprise for anyone that a stochastic model that
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has been forced to act as a boolean network with noise by an engineered scale separation indeed
works as a boolean network with noise. Therefore I opted to enforce bistability by adjusting θself,1,
which allowed bistability to occur (near θself,1 = 6.7) while keeping scale blurring. Corresponding
trajectories are also shown figure 6.

It is on the resulting network that we will run the following tests.

2.1 Resistance to stimuli

An important property of epigenetic memory is its ability to withstand environmental noise.
In our model, environmental noise is traduced as an additive term in activity potential expression.

I have characterised the resistance to forced state transition as a function of both extrinsic
stimuli strength and duration. Due to how activity potential is traduced into protein levels, both
strength and duration should be high enough for forcing a transition. Unconveniently, my hard-
ware is insufficient to characterise stimuli effect in a two-dimensional landscape. Therefore, effect
of stimuli strength and stimuli duration on transition probability are studied separately.

Test for resistance to transient stimuli have been conduced with the following protocol : A
strong stimuli (δ = 100) was applied for 50h to force the system on one of its stable state, then
the opposite stimuli was applied for t varying between 1h (near certain absence of transition)
and 25h (near certain transition). The process was repeated n = 20 times for each transition
((+,−,+) → (−,+,−) and (−,+,−) → (+,−,+)), and checking for state change in each run
allowed to plot probability of state change as a function of stimuli duration for both transitions.
A similar protocol was followed with varying stimuli strength for t = 50h and n = 10.

Figure 7 – Test for resistance to stimuli
Left : varying stimuli time with δ = 100

Right : varying stimuli strength with t = 50h

Results are displayed figure 7. They confirm our initial conjecture : while stimuli of significant
strength and duration will near certainly cause a state change, a stimuli that lack either strength
or duration will near certainly have no effect on the system. Transition seem to happen around
δ = 0.5± 0.3; t = 15± 5h.

This test confirm the ability for our double toggle switch to filter out environmental noise, even
in the absence of scale separation.

2.2 Equilibration

Due to the structural asymetry, one might wonder whether both the (−,+,−) and (+,−,+)
states have similar ability to retain information. To check this, I imposed a periodic stimuli forcing
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(a) θself,1 = 6.7 (b) θself,1 = 6.3

Figure 8 – Equilibration test
Left : with original θself,1

Right : with adjusted θself,1

the (+,−,+) and the (−,+,−) state alternatively, before letting the system evolve endogenously
for t = 1000. Then, I plotted figure 8 a heatmap of the protein level corresponding to the central
and one lateral gene during this time.

With the initial parameter of θself,1 = 6.7, the central gene clearly was overexpressed relatively
to the lateral one. This was however easy to fix by setting θself,1 = 6.3.

This shows that while equilibrated balance isn’t a necessary condition of the double toggle
switch, it can easily be adjusted through evolution.

2.3 Memory dimensionality

Figure 9 – Memory dimensionality test
log(Φ) for the central and one lateral gene

On the heatmap figure 8, the system
seem to simply oscillate between two at-
tractors, as its function requires. I plotted
figure 9 additional graphics to check whe-
ther it actually is the case, or additional
functional dynamics do exist beside the 1-
bit memory.

As the activation potential seem to clo-
sely follow a oblique line in log space (ver-
tical and horizontal lines correspond to ar-
tificial stimulation) with a clear separation
near log(Φ) = −1, it seems likely that no
information other than the discrete-level
state is informative of activation dyna-
mics.

In other word, beside the binary me-
mory we purposely implemented in our
system, all existing dynamics can be un-
derstood as noise.
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Conclusion

In the present work, I built a model of the double toggle switch motif in the context of genetic
regulation network and analysed its functional and dynamic properties.

I argued that, in the model I studied, the network could act as a boolean network with noise in
the context of ”scale separation” (that is, when repressed genes never influence themselve or their
neighbour, and active genes always influence them at maximum level) as it allows to introduce a
binary reduction of the system statespace that traduces all functional dynamics. I studied com-
putationally a case where scale separation is not respected, and showed that it could still retain
information in the context of irrelevant (weak or transient) stimuli, and that system dynamics can
be described as a binary memory with noise.

Open questions still exist that are beyond the scope of this study. For exemple, by plotting
the distribution of endogenous state switch as a function of run time, we could check whether the
process can empirically be described as Markovian at the discretised states level. In this case, the
double toggle switch could be functionally characterised as a simple two-state Markov process,
with change rates depending on endogenous parameters and exogenous stimuli.

This would allow straightforward analytic resolution of the system’s functional properties (that
is, of the dynamics of its memory), without information loss. While it is likely verified in the case of
scale separation, it is ambiguous whether the Markov property still holds without a clear definition
of the discretised states it would model, and whether these temporal correlation can be accounted
for in a model based on stochastic transition between discrete quasi stable states.

In any case, the study of endogenous behaviour of gene regulation networks is critical to deve-
lopmental biology. Functional models of simple motifs might help in identifying emerging organism-
level properties relevant to evolution or medicine. I hope these approaches one day allow similar
advances to those discussed in introduction.
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